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Abstract: Dementia is broadly characterized by cognitive and psychological dysfunction that sig-
nificantly impairs daily functioning. Dementia has many causes including Alzheimer’s disease
(AD), dementia with Lewy bodies (DLB), and frontotemporal lobar degeneration (FTLD). Detec-
tion and differential diagnosis in the early stages of dementia remains challenging. Fueled by AD
Neuroimaging Initiatives (ADNI) (Data used in preparation of this article were obtained from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database. As such, the investigators within
ADNI contributed to the design and implementation of ADNI and/or provided data but did not
participate in analysis or writing of this report.), a number of neuroimaging biomarkers for AD
have been proposed, yet it remains to be seen whether these markers are also sensitive to other
types of dementia. We assessed AD-related metabolic patterns in 27 patients with diverse forms of
dementia (five had probable/possible AD while others had atypical cases) and 20 non-demented
individuals. All participants had positron emission tomography (PET) scans on file. We used a
pre-trained machine learning-based AD designation (MAD) framework to investigate the AD-related
metabolic pattern among the participants under study. The MAD algorithm showed a sensitivity of
0.67 and specificity of 0.90 for distinguishing dementia patients from non-dementia participants. A
total of 18/27 dementia patients and 2/20 non-dementia patients were identified as having AD-like
patterns of metabolism. These results highlight that many underlying causes of dementia have
similar hypometabolic pattern as AD and this similarity is an interesting avenue for future research.

Keywords: FDG-PET; machine learning; support vector machine; metabolic classification; neurode-
generative disease; dementia; Alzheimer’s disease; frontotemporal lobar degeneration; dementia
with Lewy bodies; biomarker

1. Introduction

Major neurocognitive disorder, commonly known as “dementia” is a broad term
used to describe cognitive dysfunction including deficits in memory, self-management,
language skills, problem solving, attention, and/or visual perception [1,2]. Psychological
changes such as apathy, anxiety, depression, irritability, psychotic symptoms, sleep issues,
hallucinations, inappropriate behavior, and paranoia are also common, depending on the
underlying disease [1,3]. Importantly, for these symptoms to be classified as dementia,
the patient must experience a dramatic impairment to their normal daily life and activi-
ties [2,4]. If cognitive dysfunction is mildly to moderately interfering with day-to-day life,
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this is classified as mild neurocognitive disorder or mild cognitive impairment (MCI) [1].
The number of people suffering from dementia is estimated to be 66 million by 2030 [5],
which is estimated to significantly inflate the societal and financial burden (currently in the
hundreds of billions of USD annually) [6].

Because dementia has such a broad range of causes, it has recently been categorized
as either neurodegenerative (previously “irreversible”) and non-neurodegenerative (pre-
viously “possibly reversible”) in origin [2]. Overall, approximately 60–70% of dementia
cases are attributable to Alzheimer’s disease (AD)—a neurodegenerative disease with the
majority of cases occurring after the age of 65 [2]. After AD, the most common neurodegen-
erative causes of dementia are dementia with Lewy bodies (DLB) and frontotemporal lobar
degeneration (FTLD). DLB is characterized by aggregation of alpha-synuclein proteins in
the brain—these same misfolded proteins as also found in Parkinson’s disease (PD) [2].
FTLD typically has a mean disease onset age in a patient’s 60s and is characterized by
frontal and temporal lobe atrophy associated with tau and ubiquitin proteins [1]. FTLD
can be one of two subtypes: behavioural (changes in personality/behaviour; bvFTLD)
or language (semantic dementia, progressive nonfluent aphasia, or logopenic aphasia
subtypes, also collectively referred to as primary progressive aphasia (PPA)) [1]. Mixed
dementia is also common, especially as patients age, and has several underlying causes,
for example, mixed dementia can include a combination of AD, vascular dementia, or
DLB [2,7].

Non-neurodegenerative causes of dementia include vascular dementia (e.g., due to
stroke, ischemic encephalopathy) which causes as high as 15–20% of dementia cases [8],
metabolic disorders, medication, head trauma (e.g., subdural hematomas and diffuse
axonal injury), and infection (e.g., human immunodeficiency virus) [2]. Additionally, there
are several disorders or diseases that may mimic dementia, but may not develop into
full dementia, such as MCI and primary psychiatric disorder [2]. Table 1 presents a brief
overview of some of the most common diagnoses associated with dementia, as well as a
brief summary of neuroanatomical findings, including findings from fluorodeoxyglucose
positron emission tomography (FDG-PET) data. For more information related to the role of
FDG-PET in neurodegenerative diseases, see [9–11].

Table 1. Summary of symptoms and affected neuroanatomy of common dementia diagnoses.

Diagnosis Symptoms Affected Neuroanatomy

Alzheimer’s disease (AD)

Progressive episodic and semantic memory
loss is the first and major symptom.
Executive dysfunction, impaired judgement,
changes in mood, personality, and behaviour,
and language deficits (aphasia) are seen as
the disease progresses [12,13]. Visuospatial
deficits are also observed, but tend to be less
severe than other cognitive symptoms [13].

Degeneration of medial temporal lobe
structures (hippocampus, entorhinal
cortex) [13]. Hypometabolism in limbic
system (posterior cingulate and
parahippocampal gyri), precuneus,
posterior parietal cortex, and bilateral
middle and inferior temporal gyri
[14,15]. Prefrontal association cortex,
temporoparietal, and posterior
cingulate regions are associated with
dementia severity [16].

Atypical AD

Posterior cortical
atrophy (PCA)

Subtle vision problems that worsen over time
including facial/object agnosias and alexia,
difficulty with spatial awareness and judging
distance. Later stages are likely to include
memory loss, confusion, and communication
difficulties. Most often (but not always)
associated with AD [13,17].

Hypometabolism in striatum, lateral
occipital lobe, inferior parietal lobe,
lingual gyrus, posterior cingulate,
cuneus, precuneus, supramarginal
gyrus, and thalamus [18].

Frontal variant
AD (fvAD)

Early memory complaints and semantic
language impairment. Irritability, delusions,
and movement disorders (myoclonus) are
also common [19].

Symmetrical degeneration of temporal
lobes, with additional atrophy in
frontal lobes, posterior corpus callosum
and perisylvian region [19].
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Table 1. Cont.

Diagnosis Symptoms Affected Neuroanatomy

Dementia with
Lewy bodies

Deficits in attention and visuospatial and
executive functions, poor regulation of
bodily functions, visual hallucinations,
movement disorders (e.g., Parkinsonism), [1].

Hypometabolism in occipital cortex
(primary visual cortex, Brodmann areas
17–19), temporal and parietal cerebral
cortices [10,20].

Frontotemporal
lobar

degeneration
(FTLD)

FTLD (generally)
Gradual and progressive deficits in
behaviour (bvFTLD), language (PPA), or
movement. Memory is often spared [21].

Hypometabolism in ventromedial and
anterior frontal lobe, ventral temporal,
and medial thalamic regions [22,23].

Behavioural
variant FTLD,

bvFTLD

Late memory complaints. Language
impairment (socioemotional aspects and
phonemic fluency). Changes in personality
and inappropriate behaviour, compulsivity,
difficulty planning and organizing, apathy,
anhedonia, lack of sympathy/empathy
[1,2,19].

Symmetric or asymmetric
frontotemporal cortex degeneration
[19,21].

Progressive
supranuclear

palsy, PSP

Difficulty with rigidity, walking, postural
instability, and eye movements. Executive
dysfunction (difficulty concentrating,
problem-solving, decision-making, and
planning), and language deficits are common
(depending on subtype) while memory is
often spared [2,24].

Tauopathy with
accumulation/degeneration in basal
ganglia, diencephalon, and brainstem
[24]. Hypometabolism in insular cortex,
lateral and midline frontal cortex,
cerebellum, brainstem, and caudate
nucleus [25].

Progressive
primary aphasia

(PPA)

PPA (generally) Difficulty with language most prominent
feature that impairs daily living [2,26].

Hypometabolism in left parietal and
posterolateral temporal lobes [9].

Semantic
dementia

Speech is fluent but understanding of word
meaning is impaired. Prosody and syntax are
spared while emotionality may be impaired
[21,26,27].

Anterior temporal cortex atrophy,
hypoperfusion or hypometabolism [26].

Progressive
nonfluent aphasia

Speaking becomes effortful, motor-related
speech deficits and loss of grammar are
evident while word knowledge is spared
[21,26].

Left posterior fronto-insular atrophy,
hypoperfusion or hypometabolism [26].

Logopenic
aphasia

Speech becomes slow and hesitant, finding
the correct word becomes difficult, and
sentence repetition is difficult [21,26,28].

Left posterior perisylvian or parietal
atrophy, hypoperfusion or
hypometabolism [26]. These patients
sometimes present with AD at autopsy,
but results have been controversial
[2,13]

Vascular
dementia

Varies, depending on location of
stroke/lesion [1].

Hypometabolism and lesions in focal
cortical and subcortical regions [29].

Mixed dementia
Dementia attributed to more than one cause,
as such, symptoms vary as per other
diagnoses.

Depends on diagnoses.

Mild cognitive
impairment 1

Cognitive function worse than normal for the
individual, but not causing interruption to
daily living [1]

Posterior cingulate, inferior parietal
lobe, and precuneus [9].

Primary
psychiatric
disorder 1

Various, depending on the diagnosis.
Memory complaints, depressive or anxious
mood, altered sleep cycles, slowed
processing speeds, executive dysfunction,
difficulty concentrating, worry, irritability,
fatigue, muscle tension [30,31].

Increased activity in amygdala, altered
activity in anterior cingulate cortex and
hippocampus, and reduced activity in
prefrontal cortex, [32,33].

1 Mild cognitive impairment (MCI) and primary psychiatric disorder are not classified as dementia although MCI can develop into
dementia over time, and primary psychiatric disorders can mimic dementia symptoms.
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The underlying cause of dementia can be difficult to determine based on similar
symptom profiles, especially in early stages, while the underlying pathophysiology further
complicates diagnosis. For example, amyloidogenic proteins such as tau proteins and
amyloid plaques can be involved in different disease processes. Tau proteins accumu-
late to form neurofibrillary tangles which are found in both FTLD and AD [34], while
beta-amyloid forms the amyloid plaques characteristic of AD. Higher than normal con-
centrations of both tau proteins and beta-amyloid are also found in PD dementia and
DLB [35]. Currently, a neurodegenerative disorder-related dementia diagnosis is made
predominantly on clinical observation and patient interviews. These include a thorough
clinical history, neurological examination assessing mental status, blood samples to rule
out metabolic and vitamin abnormalities, and a structural brain scan [2]. Although neu-
roimaging and genetic testing (e.g., Apolipoprotein E (APOE) which increases the risk of
AD) can aid early diagnosis, quantitative biomarkers are still lacking. With the exception
of rare genetic forms of disease, the gold standard for confirming a diagnosis requires
post-mortem histopathological analysis. In addition to being able to provide more accurate
prognostication for patients, accurate diagnoses will become increasingly important as
disease modifying therapies targeting various disease pathways are developed. Addition-
ally, successful interventions may only be effective in the early stages of disease, before
widespread, irreversible damage and cell death has occurred [36]. These factors emphasize
the importance of research on the development of accurate diagnostic tools that are able to
discriminate between diseases and identify them early.

Collaborative efforts, led by Dr. Weiner at the AD Neuroimaging Initiative (ADNI;
http://www.adni-info.org; accessed on 15 March 2015) have led to the collection of more
than 13,000 scans from 2500 participants, acquired from over 50 sites across North America.
Utilizing the ADNI database, a number of studies constructed quantitative biomarkers that
may aid AD diagnosis [37–45]. However, it is yet unclear if these AD-based neuroimaging
biomarkers are specific to AD and thus raise questions of whether the use of neuroimaging
biomarkers will be helpful in clinics.

Our group previously developed a Machine learning-based Alzheimer’s disease
Designation (MAD) algorithm using the FDG-PET data collected by ADNI [44]. FDG is the
most commonly used radiotracer for PET, aiding dementia diagnosis. The MAD algorithm
provides a quantitative binary outcome, indicating whether or not the spatial topography of
a given FDG-PET image matches the characteristic FDG-PET pattern of AD patients. In our
previous retrospective study, interestingly, patients with other neurodegenerative diseases
with aspects of dementia, such as PD dementia or DLB, were also classified as having the
AD-related FDG-PET pattern, whereas cognitively healthy patients with PD were not [44].
These findings suggest that there may be similarities in the brain glucose metabolic pattern
among patients with different types of dementia. In the present retrospective study, we
investigate how the MAD program classifies different patient groups seen in our local
neuropsychiatric clinic and further demonstrates that a common phenotype of glucose
metabolic pattern exists across the spectrum of dementia.

2. Materials and Methods

All FDG-PET images were obtained from the neuropsychiatric clinic (MM) at St. Boni-
face Hospital in Winnipeg, Manitoba, Canada, and were retrieved from 2015 to 2019. These
patients were referred for FDG-PET because they presented neuropsychiatric symptoms
that do not meet typical characteristics of a single disease category. Participants underwent
metabolic imaging with FDG-PET after fasting for at least 6 h before scanning. Patients
were injected with i.v. [18F]-FDG (185 MBq) and a 15-min static image was acquired start-
ing 40 min post-injection. A head computed tomography (CT) scan was acquired for
attenuation correction purposes. All PET imaging data for this project were acquired on
a Siemens Biograph 16 HiRez PET/CT scanner (Siemens Medical Solutions, Knoxville,
TN, USA), located in the John Buhler Research Centre at the Bannatyne campus of the
University of Manitoba. Clinical charts were reviewed in August 2020. Image and chart

http://www.adni-info.org
http://www.adni-info.org
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retrieval were conducted with ethics approval (approval number: HS18972, approved on
1 September 2015) from the Biomedical Research Ethics Board at the University of Mani-
toba, Health Sciences Centre, and St. Boniface hospital and in compliance with the patient
health information act (PHIA).

Participants were classified based on their most recent clinical diagnoses (average
follow-up duration after PET scans: 13.10 ± 15.49 months), such as the Montreal Cognitive
Assessment (MoCA), Mini Mental Status Exam (MMSE), and Frontal Assessment Battery
(FAB). The groups used were dementia not yet differentiated, AD, DLB, FTLD, MCI,
primary psychiatric disorder, and cognitively healthy (CH; see Table 2). In this study,
we excluded data from participants that did not put sufficient effort for allowing clinical
diagnoses to be made (n = 1). As our primary goal was to explore the signature of
dementia in neurodegenerative diseases, we divided our dataset into dementia (n = 27,
mean age ± SD: 63.25 years ± 8.32, age range: 49–80 years, females: 33%) and non-
dementia (n = 20, mean age ± SD: 56.00 years ± 10.04, age range: 41–78 years, females: 40%)
cohorts. There was a significant difference between dementia and non-dementia cohorts
in terms of age at examination (t(45) = 2.70, p = 0.01). Table 2 presents the patients’
demographic data.

Table 2. Demographic data with respect to dementia status (n = 47).

Category Clinical Diagnosis n Mean Age (SD) Male:
Female

Average Follow-Up
Duration (Months)

Dementia
(n = 27)

Undifferentiated dementia 4 58.50 (4.72) 2:2 26.00 (4.24)4

Alzheimer’s disease 5 61.00 (12.55) 2:3 29.80 (29.68)
Posterior cortical atrophy 1 55.00 (0.00) 1:0 4.00 (0.00)

Atypical Alzheimer’s disease, frontal 1 64.00 (0.00) 0:1 5.00 (0.00)
Dementia with Lewy bodies 1 67.00 (0.00) 1:0 1.00 (0.00)

Frontotemporal lobar degeneration 1 3 67.00 (9.85) 2:1 0.00 (0.00) 4

Progressive supranuclear palsy, PSP 2 62.00 (1.41) 2:0 7.00 (1.41)
Primary progressive aphasia 2 6 62.66 (7.60) 5:1 11.80 (8.04) 5

Mixed dementia (vascular + AD) 3 4 70.50 (7.41) 3:1 13.75 (14.08)

Non-Dementia
(n = 20)

Mild cognitive impairment 8 58.25 (9.13) 7:1 18.75 (18.96) 4

Primary psychiatric disorder 3 56.00 (6.55) 2:1 50.00 (0.00) 4

Cognitively healthy 9 54.0 (12.13) 3:6 8.11 (8.87)
1 Behavioural variant. 2 Participants with non-fluent, semantic, and logopenic primary progressive aphasia were grouped together. 3 In the
present sample, mixed dementia is the coexistence of cerebrovascular disease and AD. 4 Two participants did not return for follow-up.
5 One participant did not return for follow-up.

All FDG-PET images were pre-processed and analysed as described elsewhere [44].
Briefly, FDG-PET images were spatially normalized to the PET template provided by SPM12
software (https://www.fil.ion.ucl.ac.uk/spm/; accessed on 1 March 2015) using the “old
Normalize” routine as this does not require a T1w image for normalization. Data were
then smoothed with a Gaussian filter (kernel size: 8 mm × 8 mm × 8 mm). To compute
the participant scores from their PET data, we used our pre-trained MAD framework
(https://www.kolabneuro.com/software1; accessed on 1 March 2015). The details of MAD
derivation and performance validation have been described elsewhere [44]. In summary,
the MAD framework was trained on the basis of metabolic brain features of 94 AD patients
and 111 age-matched CH controls [44]. Among the five different prediction algorithms
that were tested, support vector machine–iterative single data algorithm (SVM-ISDA; no
assumption in the initial estimates, alpha; kernel offset parameter = 0.1; kernel scale = 1;
misclassification cost = [0 1; 1 0]; maximal number of numerical optimization iterations =
1,000,000; Feasibility gap tolerance = 0; tolerance for gradient difference = 0) showed the
best performance in predicting AD vs. non-AD (i.e., a sensitivity of 0.84 and specificity
of 0.95, by 10-fold cross-validation) [44], and thus we selected this model as our main
classifier.

https://www.fil.ion.ucl.ac.uk/spm/
https://www.kolabneuro.com/software1
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3. Results

Forty-seven patients were scanned with FDG-PET between 2015 and 2019. The
summary of results for all patients are presented in Table 3. More than 66% of the pa-
tients with different subtypes of dementia showed AD-like brain metabolic patterns using
MAD (18/27), whereas this rate in the non-dementia group was only 10% (2/20). Thus,
the sensitivity and specificity for differentiating dementia from non-dementia patients in
neurodegenerative diseases was 67% and 90%, respectively.

Table 3. The proportion of each group that received a positive classification of AD from the SVM-
ISDA classifier.

Category Clinical Diagnosis MAD

Dementia

Undifferentiated dementia 2/4
Alzheimer’s disease 4/5

Posterior cortical atrophy 1/1
Atypical Alzheimer’s disease (frontal

variant) 0/1

Dementia with Lewy bodies 1/1
Frontotemporal lobar degeneration

(behavioural variant) 2/3

Progressive supranuclear palsy 1/2
Primary progressive aphasia 5/6

Mixed dementia (vascular + AD) 2/4
Total 18/27

Non-Dementia

Mild cognitive impairment 1/8
Primary psychiatric disorder 0/3

Cognitively healthy 1/9
Total 2/20

MAD: Machine learning-based Alzheimer’s disease Designation algorithm.

Five patients were clinically diagnosed with AD in the follow-up visits, four of which
were accurately classified as AD by MAD. The majority of patients with other subtypes of
dementia such as posterior cortical atrophy (1/1), DLB (1/1), bvFTLD (2/3), PSP-F (1/1),
and PPA (5/6) groups were also classified as AD. Indeed, the patients in these groups
exhibit the AD-like brain metabolic patterns. Two patients (out of four) in the undifferenti-
ated dementia group were identified as AD. In the non-dementia cohort, 7/8 participants
in the MCI group, 3/3 in the primary psychiatric disorder group, and 8/9 in the CH group
were classified as non-AD. The boxplots of the SVM values generated by MAD in different
test groups is shown in Figure 1, whereas Figure 2 displays the projection of z-maps in
different types of neurodegenerative diseases compared to the CH group in the training set
from our previous work (N = 111) [44].
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Figure 1. SVM scores generated by MAD in different test groups. A positive score means that
MAD classified the subject’s FDG-PET brain image as similar to AD patients’ images. Undiff:
Undifferentiated dementia; AD: Alzheimer’s disease; PCA: Posterior cortical atrophy; AAD: Atypical
Alzheimer’s disease (frontal); DLB: Dementia with Lewy bodies; bvFTLD: Frontotemporal lobar
degeneration, behavioural variant; PSP: Progressive supranuclear palsy; PPA: Primary progressive
aphasia; Mixed: Mixed dementia (vascular + AD); MCI: Mild cognitive impairment; PPD: Primary
psychiatric disorder; CH: Cognitively healthy.

Figure 2. Averaged FDG-PET brain images of different types of dementia. The FDG-PET images have been z-scored to
the mean and standard deviation of 111 cognitively healthy individuals that were included in the training set of MAD
derivation in our previous study [44], then averaged within each dementia type. Undiff: Undifferentiated dementia;
AD: Alzheimer’s disease; PCA: Posterior cortical atrophy; AAD: Atypical Alzheimer’s disease (frontal); DLB: Dementia
with Lewy bodies; bvFTLD: Frontotemporal lobar degeneration, behavioural variant; PSP: Progressive supranuclear palsy;
PPA: Primary progressive aphasia; Mixed: Mixed dementia (vascular + AD); MCI: Mild cognitive impairment; PPD: Primary
psychiatric disorder; CH: Cognitively healthy. The colour bar represents z value.
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4. Discussion

In this study, we used a robust prediction framework with desirable performance for
identifying an AD-related metabolic pattern [44]. To our knowledge, this is the first study
that explored the AD-related metabolic patterns in different types of neurodegenerative
diseases, with respect to dementia. The majority of participants in the dementia cohort
(18 out of 27) were labelled as having an AD-related brain metabolic pattern when using
the MAD algorithm described in [44]; the majority of participants in the non-dementia
cohort (18 out of 20) were identified as non-AD. Our MAD framework showed a desir-
able performance for distinguishing dementia patients from non-dementia participants
(sensitivity: 67%, specificity: 90%) in the present sample. Although there was a significant
difference in age at examination between dementia and non-dementia cohorts, it is worth
noting that age was not associated with an SVM-ISDA designation of AD [44].

Most of those in the AD group (4/5) were correctly categorized as having AD, in line
with our previous work [44]. We further confirmed and extended the findings in our previ-
ous work showing that the MAD algorithm also classifies brain metabolic patterns of other
underlying causes of dementia as AD-like in nature [44]. Indeed, there is considerable over-
lap in regions of hypometabolism between AD and various other causes of dementia (see
Table 1) [9,14,15,18,19,22,23,46]. For instance, AD and FTLD share frontal and temporal lobe
hypometabolism; however, in FTLD this hypometabolism extends to more anterior regions
of these lobes, in addition to hypometabolism in the anterior cingulate cortex; metabolism
in these regions is typically preserved with the exception of mild hypometabolism of the
frontal lobe in AD [47]. On the other hand, AD tends to exhibit hypometabolism in the
bilateral posterior parietotemporal lobe and the posterior cingulate cortex while these are
preserved in the early stages of FTLD [47]. Further complicating differential diagnoses of
dementia, DLB and PCA also show hypometabolism in bilateral posterior parietotemporal
and posterior cingulate regions. These diseases additionally show hypometabolism in
medial (DLB) and lateral (PCA) occipital cortex, which are preserved in AD and FTLD [47].

Given the literature indicating metabolic similarities between AD and various other
dementia-causing neurodegenerative diseases, it is not surprising that many of these
diseases were positively identified as having AD-like metabolism by the MAD algorithm.
These results highlight that while the MAD algorithm did not readily distinguish between
AD and other causes of dementia, it did distinguish between dementia and the potential
precursor for dementia (i.e., MCI which had 1/8 MAD-positive) and primary psychiatric
disorders (0/3 MAD-positive), which can mimic dementia symptoms.

Many of the large neuroimaging databases such as the ADNI are focused on single
diseases and their precursors (e.g., MCI), but have not yet considered other causes of
dementia. Thus, little emphasis has been placed on identifying regional alterations that are
common or different across varying types of dementia, hindering the use of the proposed
neuroimaging markers in clinics.

While the small sample size of the test dataset can be considered a limitation, it is
important to note that the purpose of the current work was not to distinguish which
underlying causes of dementia closely resembled an AD-like pattern of metabolism. On
the contrary, the present study instead highlights that the MAD algorithm in particular
can readily distinguish between dementia and non-dementia cases. Further study with
larger sample sizes is required to identify if hypometabolism or activity in specific regions
is shared among all or most causes of dementia, as well as which regions are unique to
specific diseases.

Another limitation was that the follow-up term after the FDG-PET scans was relatively
short in all groups. A longer follow-up period would allow us to have a better understand-
ing of the prediction outcomes in clinical settings. Finally, due to the retrospective nature
of this study, the clinical variables were not available for all participants, restricting any
systemic correlation analysis with imaging-based scores in different test groups.
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